

DEIMOS Earth Observation System

Elsa Alexandrino DMI

> MundoGEO#Connect LatinAmerica 2013 20 de Junho São Paulo Brasil

DEIMOS-1 Earth Observation System

The DEIMOS-1 System Capacity

DEIMOS-1 Products and Services

Support to Crisis Management

Case Studies

DEIMOS EO System Evolution: DEIMOS-2

The DEIMOS-1 System

Fully owned and operated by **ELECNOR DEIMOS IMAGING** Launched in July 2009, operational since March 2010 5 years nominal lifetime, >7 years expected DMC constellation ESA Third Party Mission

DEIMOS-1 Satellite

Built by SSTL (UK)
100 Kg
Nadir-pointing platform
Sun-Synchronous orbit at 650 km
8-Gb on-board solid state recorder
X-band antenna for data transmission
S-band antenna for telemetry & telecommand
Pushbroom CCD, 3 cameras per bank
Spatial Dual-bank resolution of 22m GSD at 10 bits
650 km swath

R,G,NIR similar to Landsat to assure continuity with existing tools and harmonization with historical data

DEIMOS-1 System capacity

DEIMOS-1 On-Line Image Catalog (20,000+ images)

Mission Planning simulation for Brazil coverage – 13 to 28 June

2-3 images of Brazil per day

Latin America mosaic using DEIMOS-1 data

2-3 images per day over US

(~1 million km² per day)

Complete coverage of the US and Europe every 2 weeks

Main features

Rapid coverage and revisit of large areas given by:

Wide swath – 600km Very large images up to 620 x 1240 km Data download each orbit Near-real time capacity

Large areas with great detail

Ground Segment

ELECNOR DEIMOS premises host a control centre integrated with the user segment:

Mission Planning Flight Operations Image Processing Archive and Dissemination

Advanced mission planning system, based on ELECNOR DEIMOS expertise as a well-known European leader in Mission Planning for Earth Observation missions

optimization of large coverage campaigns

qs4EO

ground segment

Near-real time capacity

Data can be delivered in less than 2 hours after acquisition

Three ground stations in Spain and Norway for data download in each orbit

Communication with satellite and data download every 100 minutes

Natural color mosaic of CONUS using DEIMOS-1 data from June 2011

Worldwide Coverage

Yearly cloud-free coverages of Africa

Worldwide Coverage

BRAZIL COVERAGES

DEIMOS-1/Landsat

Region	Deimos-1	Landsat ETM+	Landsat TM
G	510-618 nm	508-618 nm	507-619 nm
R	614-698 nm	615-701 nm	622-704 nm
NIR	755-906 nm	750-910 nm	750-912 nm

Transmissivity

Wavelength (nm)

- Permanent Cross-calibration with Landsat-7 (Δ< 3%)
- Cross-Calibration with Landsat-8 from Q3 2013

DEIMOS-1/Landsat

Spain coverage with Landsat-8 (16 days) and DEIMOS-1 (2 days)

 \rightarrow indicated for emergencies or applications with frequent revisits

Landsat-8, 16 days

DEIMOS-1, 2 days

Real data - 1/16 June 2013 acquisition campaign

DEIMOS-1 archive

http://www.deimos-imaging.com/extcat2/

DEIMOS-1 Products & Services

Products and Services

22 m Imagery

Country Coverage and Maps

22m Natural Color Imagery

Spectral Indices

Fire Mapping

Flood Mapping

LULC

...and several applications supporting:

Agriculture

Environment

Forestry

Crisis Management

Maritime Security

DEIMOS-1 Natural Color Product: wetland in Volga catchment, Russia 2012

Agriculture

Optimal Satellite for Large-Scale Agriculture Applications

Variação temporal de NDVI - Parcelas JCL

Cliente: (Cultura: Jaropha curcas Linnaeus Localização: C Descrição: Parcelas A1; A2; A3; B1; B2; B3 Superfície: 67.8 Ha

- · · · · · · · · · Moçambique

Aquisição: DEIMOS-1 (28 Janeiro 2012)

Comentário: NDVI mais elevado nas aquisições de Janeiro 2012 e Maio 2012. Por a planta estar em dormência, os NDVI nas aquisições de Setembro e Agosto 2012 são baixos. São notórios valores mais baixos de NDVI nas parcelas A1/A2 e valores mais elevados nas parcelas A3 (sub-parcela CC2), B1 e B2 (especialmente em Janeiro e Maio). No centro do conjunto formado pelas parcelas A2/A3/B1/B2 existe um menor vigor, mais notório em Maio e Janeiro 2012, que se deve à incidência de Fusariose. A málise da evolução temporal da Fusariose nas parcelas necessitaria de levantamento de pontos ao longo de todo o período de malise. Contudo é notório um menor vigor na área referida ateriormente, que deixa de ser visvel em Agosto por a planta entre em dormência.

Data provider United States Department Agriculture since 2011 DEIMOS-1 and **UK-DMC2** data (75%-25%)

- □ More than **150 MKm² cloud-free** have been delivered every 6 months
- □ Cloud-free coverage requirements (>70%) greatly exceeded, on average >90%
- □ 99.5% of images delivered, ortho, in less than 72hr from acquisition

Number of images acquired, real campaign observations. September 1–15, 2012

Final product: 30-m Cropland Data Layers with 9 billion pixels

Agriculture Land Use

□ Land use analysis with DEIMOS-1 multi-temporal analysis

□ Starting from land use maps, the multi-temporal analysis allows to determine which parcels have been used in the various crop seasons

Agriculture Crop Analysis

Crop condition estimation with DEIMOS-1 multi-temporal analysis
 Starting from land use maps, the multi-temporal analysis allows to determine the condition of the crop in each parcel with respect other

reference years

Crop Condition Estimation Example of analysis of wheat crop conditions near La Campana, Sevilla (Spain)

DEIMOS-1 data from 2010, 2011 and 2012

Agriculture Insurance

Accumulated drought assessment in agriculture and pasture

Damage and compensation assessment

Low temperatures monitoring and crops damages assessment

LA LINEA CONTINUA CORRESPONDE AL AÑO PROMEDIO

Precision farming

- Irrigation Support Services (Rio Sorraia Portugal)
 - Weekly forecasts and warnings on irrigation needs, via sms
 - Periodic reports on vegetation status and growth during crop season
 - Early detection of growth anomalies and equipment malfunctions

Forestry

- The stands are the basic unit of forest management. It is defined as a farming area with a good homogeneity in terms of species composition and trees' age and condition.
- DEIMOS-1 Stands Product has been conceived as a decision support tool for the design and implementation of forest management strategies.

Plantation Monitoring - Vegetation Status

- Map of state of vegetation planting, informative about the relative photosynthetic activity of the plant.
- Map of relative status within stands, information on the areas of the stand with a more advanced or delayed growth.
- Map of temporal evolution of vegetation, with information about the observed change in each point of the stand between two observation dates.
- Map of relative temporal evolution within stands, with information on the stand areas with higher or lower growth in the last period of study.

Forest Fires

Example of forest fires monitoring using DEIMOS-1

- DEIMOS-1 images acquired on April 15th and May 4th, 2011 near San Diego
- □ Multi-temporal analysis to derive and analyze the affected area

Forest fires maps

Step 1: Multi-temporal analysis (false color)

Unburned

Step 2: Perimeter identification

Step 3: Analysis

Perimeter: 9.7 km Area: 138,873 acres

Perimeter: 71.4 km Area: 1,960,912 acres

Deforestation - Monitoring

□ DEIMOS-1 images comparison, Brazil (natural color)

elecnor

Support to Crisis Management

Oklahoma, USA, May 2013

.

Support to Crisis Management

Japan tsunami in Sendai (March 2011)

Missouri floods near the Fort Calhoun nuclear plant, Nebraska (June 2011)

elecnor

DEIMOS EO System Evolution: DEIMOS-2

The DEIMOS-2 System

Multispectral optical satellite with very high resolution (1m Pan, 4m MS) Launch End 2013

Cost-effective and highly responsive

Fast access to very-high resolution imagery

Designed and built in cooperation with SATREC Initiative (South Korea)

Integrated and tested by ELECNOR DEIMOS SATELLITE SYSTEMS

Satellite and Payload

The Satellite

- Built by ELECNOR DEIMOS in Spain, in collaboration with SATRECi (South Korea)
- Proven design with significant heritage (Dubaisat-1, -2)
- To be launched in 2013, lifetime >7 years
- Mass: 310 Kg
- Agile platform (±45° across-track)
- High-performance AOCS for pointing accuracy & stability
- Xenon gas engines for orbit maintenance

The Payload

- Pan/Multispectral high-res camera (1m Pan, 4m MS GSD)
- Main image product: 75-cm pan-sharpened
- 40-cm Korsch 4-mirror telescope (5.75 m focal length, 1.2° FoV
- Pan (450-900 nm) + 4 bands (R,G,B, NIR)
- 12 km swath (24 km in wide-area mode)
- Capacity for stereo-pair acquisitions
- Radiometric resolution 10 bits

- □ Up to **150,000 Km²/day**
- □ Global average revisit time: 2 days (±45° ACT)
- □ Average revisit time at 45° Lat: 1 day (±45° ACT)

GS fully developed by ELECNOR DEIMOS (all components including FOS, PDGS, Ground Station).

Primary GS in Puertollano, backup GS in Boecillo.

Two 10.2 m X/S band antennas: Puertollano and Svalbard (Norway)

Program Status (I)

□ **DEIMOS-2 structural model** in the clean room of ELECNOR DEIMOS Satellite Systems facilities in Puertollano (Oct.2012)

Program Status (II)

- □ **DEIMOS-2 flight model** during assembly and testing in South Korea before shipment to Spain (Apr.2013)
- □ The satellite will be ready for launch, as scheduled, in Q4 2013

ELECNOR DEIMOS Satellite Systems facilities , south of Madrid (Spain)

More than 4,000 m² office space Clean room (430 m²) & control centre 10.2-m antenna by Vertex, Germany

Thank you!

DEIMOS Imaging S.L.U. an ELECNOR company Boecillo, Spain info@deimos-imaging.com www.deimos-imaging.com