
## SOLUÇÃO DE AMBIGUIDADES NO PPP

Prof<sup>a</sup>. Ma. Chaenne Milene Dourado Alves Prof. Dr. João Francisco Galera Monico Prof. Dr. Haroldo Antonio Marques









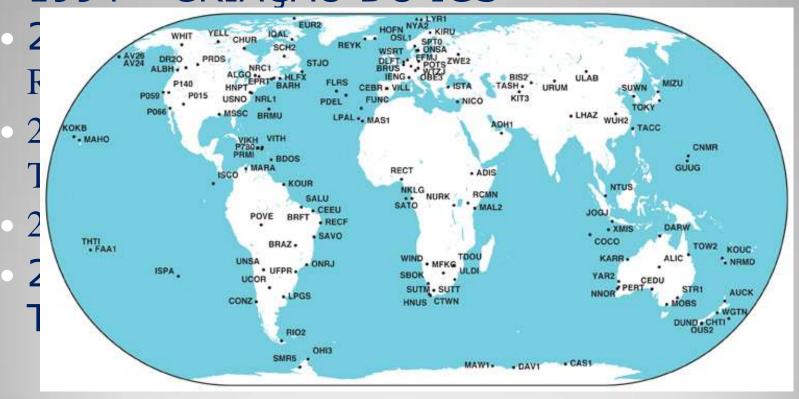


## Apresentação

Introdução

**PPP** 

Solução de Ambiguidades PPP


Metodologia

**Considerações Finais** 

- POSICIONAMENTO GNSS
- MÉTODOS DE POSICIONAMENTO
- PPP EM EVIDÊNCIA
- PPP EM TEMPO REAL
- SOLUÇÃO DE AMBIGUIDADES PPP
  - Ambiguidades Reais
  - Ambiguidades Inteiras

- 1994 CRIAÇÃO DO IGS
- 2002 Workshop intitulado "Rumo ao Tempo Real"
- 2007 O IGS deu início ao "Projeto Piloto IGS em Tempo Real"
- 2011- Projeto alcançou suas metas
- 2012 Lançamento do "Serviço IGS em Tempo Real"

• 1994 – CRIAÇÃO DO IGS



- Solução das Ambiguidades pode diminuir o tempo de convergências no PPP em tempo real
- Pode melhorar significativamente a acurácia do posicionamento
- Solução de Ambiguidades o estado da arte no posicionamento

- PPP é um método atualmente em evidência
- A solução de ambiguidade no PPP é um assunto atual que tem sido abordado em praticamente todos os congressos e eventos
- Nova perspectiva Contribuição para o desenvolvimento cientifico e tecnológico do Brasil

### Objetivos da pesquisa

 Investigar os métodos para solução de ambiguidades no PPP

 Realizar as alterações necessárias em termos de algoritmos para que seja implementado computacionalmente

# PPP

Posicionamento por ponto preciso



$$PD_{rIF}^{s} = \rho_{r}^{s} + c\left[dt_{r} - dt^{s}\right] + m_{f}Zwd + \varepsilon_{PDIF}^{s}$$

$$\lambda_{IF}\phi_{IF}^{s} = \rho_{r}^{s} + c\left[dt_{r} - dt^{s}\right] + \lambda_{IF} \overline{N}_{IF} + m_{f}Zwd + \varepsilon_{\phi IF}^{s}$$

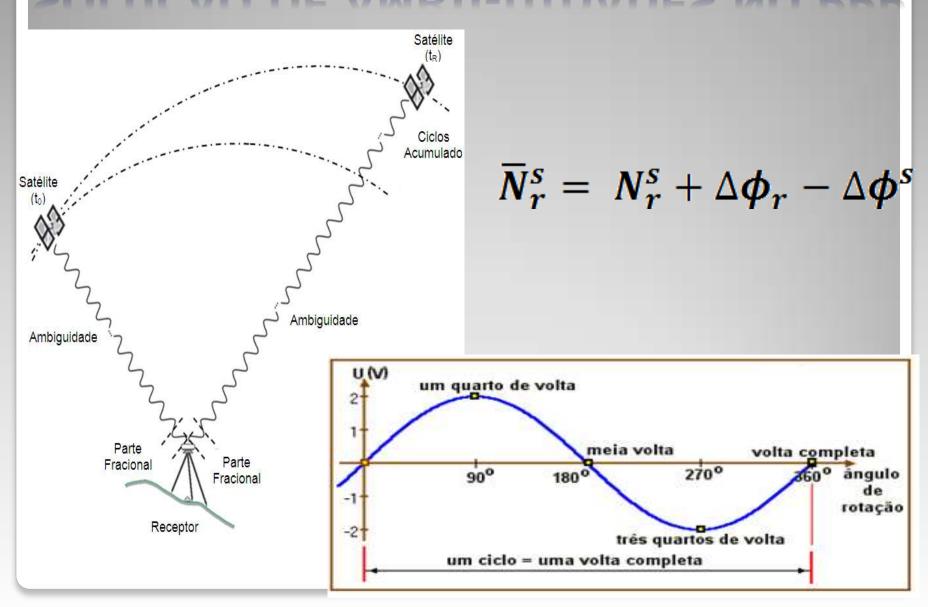
### **PPP**

$$PD_{rIF}^{s} = \rho_{r}^{s} + c\left[dt_{r} - dt^{s}\right] + m_{f}Zwd + \varepsilon_{PDIF}^{s}$$

$$\lambda_{IF}\phi_{IF}^{s} = \rho_{r}^{s} + c\left[dt_{r} - dt^{s}\right] + \lambda_{IF} \overline{N}_{IF} + m_{f}Zwd + \varepsilon_{\phi IF}^{s}$$

$$\rho_r^s = \sqrt{(X^s(t^t) - X_r)^2 + (Y^s(t^t) - Y_r)^2 + (Z^s(t^t) - Z_r)^2}$$

$$E\left\{\begin{bmatrix} \Delta P D_{r_{IF}}^{s} \\ \Delta \lambda_{IF} \phi_{IF}^{s} \end{bmatrix}\right\} = AX = \begin{bmatrix} -\frac{X^{s} - X_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Y^{s} - Y_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Z^{s} - Z_{r}^{0}}{(\rho_{r}^{s})^{0}} & 1 & m_{f} & 0 \\ -\frac{X^{s} - X_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Y^{s} - Y_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Z^{s} - Z_{r}^{0}}{(\rho_{r}^{s})^{0}} & 1 & m_{f} & \lambda_{IF} \end{bmatrix} \begin{bmatrix} \Delta \lambda_{r} \\ \Delta Y_{r} \\ \Delta Z_{r} \\ dt_{r} \\ Zwd \\ N_{IF} \end{bmatrix}$$


#### **PPP**

### Estimativa estocástica da ionosfera

 estimar o parâmetro da ionosfera para cada satélite em cada época considerando cada parâmetro não correlacionado no tempo

$$E\left\{\begin{bmatrix} \Delta P D_{r_{L1}}^{s} \\ \Delta \lambda_{L1} \phi_{L1r}^{s} \end{bmatrix}\right\} = AX = \begin{bmatrix} -\frac{X^{s} - X_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Y^{s} - Y_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Z^{s} - Z_{r}^{0}}{(\rho_{r}^{s})^{0}} & 1 & m_{f} & 0 \\ -\frac{X^{s} - X_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Y^{s} - Y_{r}^{0}}{(\rho_{r}^{s})^{0}} & -\frac{Z^{s} - Z_{r}^{0}}{(\rho_{r}^{s})^{0}} & 1 & m_{f} & \lambda_{1} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta X_{r} \\ \Delta Y_{r} \\ \Delta Z_{r} \\ dt_{r} \\ Zwd \\ N_{r}^{s} \\ \Delta I_{L1r}^{s} \end{bmatrix}$$

### SOLUÇÃO DE AMBIGUIDADES NO PPP



#### SOLUÇÃO DE AMBIGUIDADES NO PPP

$$\begin{split} & \overline{N}_{r,l}^{s,j} = \left( \overline{N}_r^s - \overline{N}_r^j \right) - \left( \overline{N}_l^s - \overline{N}_l^j \right) \\ & \overline{N}_{r,l}^{s,j} = \left( N_r^s + \Delta \phi_r - \Delta \phi^s \right) - \left( N_r^j + \Delta \phi_r - \Delta \phi^j \right) - \left( N_l^s + \Delta \phi_l - \Delta \phi^s \right) + \left( N_l^j + \Delta \phi_l - \Delta \phi^j \right) \\ & \overline{N}_{r,l}^{s,j} = \left( N_r^s - N_r^j \right) - \left( N_l^s - N_l^j \right) \\ & \overline{N}_{r,l}^{s,j} = N_{r,l}^{s,j} \end{split}$$

eliminação UPDs por meio da DD de ambiguidades

## SOLUÇÃO DE AMBIGUIDADES NO PPP

$$\begin{split} & \overline{N}_r^{s,j} = \left( \overline{N}_r^s - \overline{N}_r^j \right) \\ & \overline{N}_r^{s,j} = \left( N_r^s + \Delta \phi_r - \Delta \phi^s \right) - \left( N_r^j + \Delta \phi_r - \Delta \phi^j \right) \\ & \overline{N}_r^{s,j} = \left( N_r^s - \Delta \phi^s \right) - \left( N_r^j - \Delta \phi^j \right) \end{split}$$

$$\bar{N}_r^{s,j} = N_r^{s,j} - \Delta \phi^s + \Delta \phi^j$$

Estimativa UPDs por meio da SD de ambiguidades

#### DD AMBIGUIDADES

$$\phi_{IF_r}^{\ s} = (f_1^{\ 2}/f_1^{\ 2} - f_2^{\ 2})L1_r^s - (f_1f_2/f_1^{\ 2} - f_2^{\ 2})L2_r^s = \rho'_r^s + \lambda_1 N_{IF_r}^s$$

$$N_{IF_r}^{\ \ s} = (f_1^2/f_1^2 - f_2^2)\overline{N_1}_r^s - (f_1f_2/f_1^2 - f_2^2)\overline{N_2}_r^s$$

$$N_{IF_r}^{\ \ s} = (f_1/f_1 + f_2)\bar{N}_{n_r}^{\ \ s} + (f_1f_2/f_1^2 - f_2^2)\bar{N}_{w_r}^{\ \ s}$$

$$N_{IF_{r,l}}^{s,j} = (f_1/f_1 + f_2)\bar{N}_{n_{r,l}}^{s,j} + (f_1f_2/f_1^2 - f_2^2)\bar{N}_{w_{r,l}}^{s,j}$$

onde:

$$\overline{N}_{n_{r,l}}^{s,j} = \overline{N}_{n_r}^s - \overline{N}_{n_r}^j - \left(\overline{N}_{n_l}^s - \overline{N}_{n_l}^j\right) e \overline{N}_{w_{r,l}}^{s,j} = \overline{N}_{w_r}^s - \overline{N}_{w_r}^j - \left(\overline{N}_{w_l}^s - \overline{N}_{w_l}^j\right)$$

### SD AMBIGUIDADES

$$\phi_{IF_r}^s = (f_1^2/f_1^2 - f_2^2) \emptyset L 1_r^s - (f_1 f_2/f_1^2 - f_2^2) \emptyset L 2_r^s = \varrho_r^s + \lambda_1 N_{IF_r}^s$$

$$N_{IF_r}^s = (f_1^2/f_1^2 - f_2^2)\overline{N_1}_r^s - (f_1f_2/f_1^2 - f_2^2)\overline{N_2}_r^s$$

$$N_{IF_r}^{s,j} = (f_1/f_1 + f_2)\bar{N}_{n_r}^{s,j} + (f_1f_2/f_1^2 - f_2^2)\bar{N}_{w_r}^{s,j}$$

$$N_{IF_r}^{s,j} = \frac{f_1}{f_1 + f_2} (N_{n_r}^{s,j} + \Delta \phi_n^{s,j}) + \frac{f_1 f_2}{f_1^2 - f_2^2} (N_{w_r}^{s,j} + \Delta \phi_w^{s,j})$$

$$\widehat{N}_{w_r}^{s,j} = \widehat{N}_{w_r}^s - \widehat{N}_{w_r}^j$$

$$\sigma_{\widehat{N}_{w_r}^{s,j}} = \sqrt{\sigma^2_{\widehat{N}_{w_r}^s} + \sigma^2_{\widehat{N}_{w_r}^j}}$$

$$\widetilde{N_{w_r}}^{s,j} = \widehat{N_{w_r}}^{s,j} - \delta \phi_w^{s,j}$$

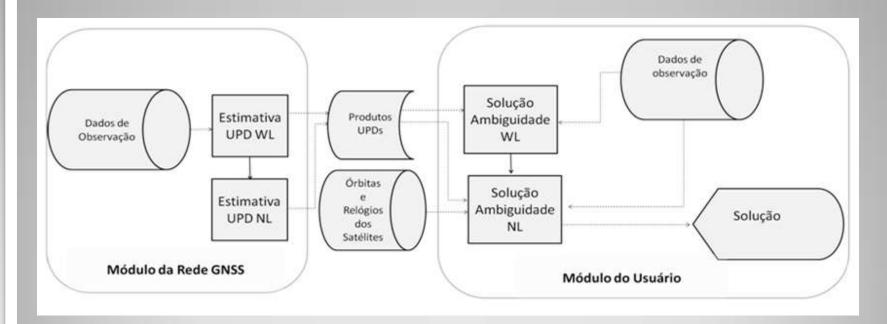
$$\sigma_{\widetilde{N_{w_r}}^{s,j}} = \sqrt{\sigma_{\widetilde{N_{w_r}}^{s,j}}^2 + \sigma_{\delta \phi_w^{s,j}}^2}$$

#### SOLUÇÃO DE AMBIGUIDADES -ESTIMATIVA UPD

$$\hat{\delta}\phi_{w}^{s,j} = \frac{1}{n}\sum_{i=1}^{n}\left[frac\left(\widehat{N}_{w_{i}}^{s} - \ \widehat{N}_{w_{i}}^{j}\right)\right]$$

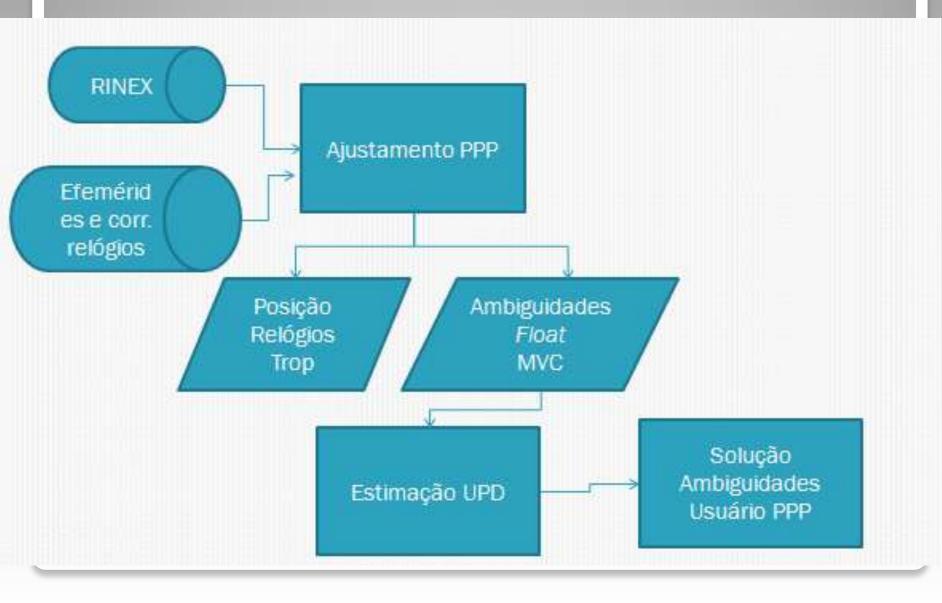
$$\sigma_{\widehat{\delta}\phi_{w}^{s,j}} = \frac{\sqrt{\sum_{i=1}^{n} \left\{ \left[ frac\left(\widehat{N}_{w_{i}}^{s} - \widehat{N}_{w_{i}}^{j}\right) \right] - \widehat{\delta}\phi_{w}^{s,j} \right\}^{2}}}{n}$$




$$\widehat{\Delta \phi}_{n}^{s,j} = \frac{1}{n} \sum_{i=1}^{n} \left[ frac \left( \widehat{N}_{n_{i}}^{s,j} \right) \right]$$

$$\sigma_{\widehat{\Delta \phi}_{n}^{s,j}} = \frac{\sqrt{\sum_{i=1}^{n} \left\{ \left[ frac\left(\widehat{N}_{n_{i}}^{s,j}\right) \right] - \widehat{\Delta \phi}_{n}^{s,j} \right\}^{2}}}{n}$$

$$\widehat{N}_{n_{i}}^{s,j} = \frac{f_{1} + f_{2}}{f_{1}} \widehat{N}_{IF_{i}}^{s,j} - \frac{f_{2}}{f_{1} - f_{2}} \widecheck{N}_{w_{i}}^{s,j} = N_{IF_{r}}^{s,j} = (f_{1}/f_{1} + f_{2}) \overline{N}_{n_{r}}^{s,j} + (f_{1}f_{2}/f_{1}^{2} - f_{2}^{2}) \overline{N}_{w_{r}}^{s,j}$$


#### Metodologia

Método em dois módulos



 Esse modelo gera e dissemina produtos para Solução Ambiguidades.

#### Metodologia



#### Em desenvolvimento...

- Aplicativo em linguagem de programação C/C++, capaz de estimar os UPDs dos satélites.
- Utilização das estações de referência do IGS, RBMC e da Rede GNSS-SP.
- O software RT\_PPP alterado para receber os UPDs estimados como dados de entrada e com as rotinas para fixação das ambiguidades do PPP em tempo real

#### **Etapas futuras...**

- UPDs estimados diariamente e armazenados em um servidor na FCT/UNESP, para posterior utilização
- O usuário tendo acesso aos produtos, juntamente com correções para órbitas e erros dos relógios dos satélites poderá realizar o PPP com ambiguidades fixas
- Codificação e envio dos UPDs estimados e disponibilização do software para realização do processamento

## Obrigada pela atenção!

chaenne@ifto.edu.br







LatinAmerica 2013

